
Nature Genetics | Volume 57 | June 2025 | 1389–1401 1389

nature genetics

https://doi.org/10.1038/s41588-025-02189-zArticle

Genome-wide analyses identify 30 loci 
associated with obsessive–compulsive 
disorder

 

Obsessive–compulsive disorder (OCD) affects ~1% of children and  
adults and is partly caused by genetic factors. We conducted a genome- 
wide association study (GWAS) meta-analysis combining 53,660 OCD 
cases and 2,044,417 controls and identified 30 independent genome-wide 
significant loci. Gene-based approaches identified 249 potential effector 
genes for OCD, with 25 of these classified as the most likely causal 
candidates, including WDR6, DALRD3 and CTNND1 and multiple genes  
in the major histocompatibility complex (MHC) region. We estimated  
that ~11,500 genetic variants explained 90% of OCD genetic heritability.  
OCD genetic risk was associated with excitatory neurons in the 
hippocampus and the cortex, along with D1 and D2 type dopamine 
receptor-containing medium spiny neurons. OCD genetic risk was 
shared with 65 of 112 additional phenotypes, including all the psychiatric 
disorders we examined. In particular, OCD shared genetic risk with anxiety, 
depression, anorexia nervosa and Tourette syndrome and was negatively 
associated with inflammatory bowel diseases, educational attainment  
and body mass index.

OCD is a chronic psychiatric disorder that affects 1–3% of the popula-
tion1 and is characterized by obsessions and compulsions that vary 
in type and severity and over time. OCD is responsible for profound 
personal and societal costs2, including increased risk of suicide3 and 
overall mortality4. OCD is moderately heritable; twin-based heritability 
estimates range between 27% and 47% in adults and between 45% and 
65% in children5–8, with SNP-based heritability estimates between 28% 
and 37%9–11.

Two earlier OCD GWAS meta-analyses, both containing a sub-
set of the data included in this analysis12,13, showed SNP-based her-
itabilities of 8.5% (assuming a 3% population prevalence) and 16% 
(assuming a 2% population prevalence). The first GWAS (ncases = 14,140, 
ncontrols = 562,117)12 found one genome-wide significant locus associ-
ated with OCD, while the second (ncases = 37,015, ncontrols = 948,616)13 
identified 15 independent genome-wide significant loci. As with other 
complex traits, increased sample sizes are needed for a more compre-
hensive understanding of the underlying genetic etiology of OCD and 
its genetic relationships with related disorders.

The current study combines data from the two unpublished OCD 
GWASs described above and includes additional cohorts (~9,000 
cases). This results in one of the largest and most well-powered GWAS 
of OCD so far, with a ~20-fold increase of OCD cases compared to the 
previously published OCD GWASs10. Based on the results from the 
meta-analysis, we conducted secondary analyses, including posi-
tional and functional fine-mapping of SNPs and genes, structural 
equation modeling to examine possible genetic differences in sample 
ascertainment across cohorts, protein and transcriptome-wide asso-
ciation analyses, single-cell enrichment and genetic correlations with 
other traits (Supplementary Fig. 1). Our results provide more detailed 
insight into the genetic underpinnings and biology of OCD.

Results
GWAS meta-analysis identifies 30 genome-wide significant loci
We conducted a GWAS meta-analysis of 28 OCD case–control cohorts 
of European ancestry, comprising 53,660 cases and 2,044,417 controls 
(effective sample size, ~210,000 individuals). Ascertainment of cases 
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information and 0.92, s.e. = 0.07 for 23andMe and comorbid informa-
tion; Supplementary Table 7) and a satisfactory fit for a one-factor 
GenomicSEM model (Supplementary Table 8 and Supplementary 
Fig. 39). A common factor GWAS based on the one-factor GenomicSEM 
model resulted in 20 significant loci, all of which were also significant 
in the primary GWAS (Supplementary Table 8 and Supplementary 
Fig. 40; analysis details in Supplementary Note 5). SNP heritability 
(assuming a 1% population prevalence) was 6.7% (s.e. = 0.3%), with 
slightly higher estimates for the clinical (h2

SNP = 16.4%, s.e. = 1.5%) and 
comorbid (h2

SNP = 13.3%, s.e. = 1.7%) subgroups (Supplementary Table 1).

Gene-based findings
We prioritized putative risk genes for OCD using six positional and 
functional QTL gene-based mapping approaches. Positional mapping 
was performed with mBAT-combo19. Functional expression quantitative 
trait locus (eQTL) mapping was performed with transcriptome-wide 
association study (TWAS)20, using PsychENCODE gene expression 
weights21, and summary-based Mendelian randomization (SMR)22 
using the whole-blood eQTLGen23 and MetaBrain24 datasets. Functional 
protein QTL mapping was done using a protein-wide association study 
(PWAS) of human brain protein expression panels25. Finally, we used the 
psychiatric omnilocus prioritization score (PsyOPS)26, which combines 
positional mapping with biological annotations, to further prioritize 
risk genes within genome-wide significant loci. We identified 207 sig-
nificant genes (Bonferroni correction, P < 2.67 × 10−6) with mBAT-combo 
and 24 genes using TWAS (P < 4.76 × 10−6), 14 of which were conditionally 
independent. The SMR–eQTLGen analysis identified 39 significant risk 
genes (P < 4.28 × 10−6), and the SMR–MetaBrain analysis identified 14 
risk genes (P < 9.23 × 10−6). The PWAS identified three significant genes 
(P < 3.39 × 10−5), while PsyOPS prioritized 29 genes. In total, 251 genes 
were significantly associated with OCD through at least one gene-based 
approach, and 48 were implicated by at least two methods (Methods, 
Supplementary Note 7 and Supplementary Tables 9–14).

From the 48 genes implicated by at least two approaches, we pri-
oritized likely causal genes for OCD using colocalization 
(TWAS-COLOC)27,28 and SMR–heterogeneity in dependent instruments 
(SMR-HEIDI)22 tests. Colocalization was used to identify significant 
TWAS associations for which the underlying GWAS and eQTL summary 

varied across cohorts: OCD diagnosis was determined (1) by a health-
care professional in a clinical setting (18 cohorts, n = 9,089 cases), (2) 
from health records or biobanks (seven cohorts, n = 9,138 cases), (3) 
in a clinical setting or from health records with the additional charac-
teristic that all OCD cases were primarily collected for another psychi-
atric disorder (three cohorts, n = 5,266 cases) or (4) by self-reported 
diagnosis in a consumer-based setting (23andMe, Inc., n = 30,167 cases). 
Cohort details, including phenotypic assessment, quality control and 
individual cohort GWAS analyses, are described in Supplementary 
Note 2 and Supplementary Table 1. We identified 30 independent 
(defined in Supplementary Note 3) loci among the 1,672 SNPs that 
exceeded the genome-wide threshold for significance (P < 5×10−8 ; 
Manhattan plot in Fig. 1, regional association plots and forest plots in 
Supplementary Figs. 2–31 and a list of all independent genome-wide 
significant SNPs in Table 1 with additional details in Supplementary 
Tables 2 and 3). The independence of the 30 lead SNPs was subsequently 
validated using conditional and joint analysis (GCTA-COJO)14 (Sup-
plementary Table 4). Analysis of the X chromosome, conducted in a 
subset of the data for which this information was available (23andMe), 
yielded no significant associations (Supplementary Note 4 and Sup-
plementary Fig. 37e). Of the 15 genome-wide significant loci previously 
reported in preprints12,13, 13 were genome-wide significant in the current 
GWAS, with the remaining two showing suggestive significance  
(P = 5.23×10−8 andP = 2.2×10−7; Supplementary Table 5). Using 
MiXeR15, we estimated that approximately 11,500 (standard error of 
the effect estimate (s.e.) = 607) causal variants account for 90% of the 
OCD SNP-based heritability.

No statistically significant heterogeneity was observed across 
individual cohorts for the 30 genome-wide significant loci, as assessed 
with Cochran’s Q-test (Supplementary Fig. 32), the I2 statistic and the 
genomic structural equation modeling (GenomicSEM) QSNP statistic16 
(Supplementary Table 2). Genome-wide analyses of samples grouped 
by clinical, comorbid, biobank and 23andMe information (Supplemen-
tary Table 3 and Supplementary Figs. 33–37) showed evidence that 
sample ascertainment impacted results at a genome-wide scale, 
although not beyond what is observed with closely related psychiatric 
disorders17,18. We observed moderate to high genetic correlations across 
the subgroups (between 0.63, s.e. = 0.11 for biobanks and comorbid 
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Fig. 1 | Manhattan plot of OCD GWAS meta-analysis. The y axis represents −
log10 (P values) (two sided, not adjusted for multiple testing) for the association 
of variants with OCD using an inverse-variance-weighted fixed-effects model 
(ncases = 53,660 and ncontrols = 2,044,417). The x axis shows chromosomes 1–22.  

The horizontal red line represents the threshold for genome-wide significance 
(P = 5× 10−8). Index variants of genome-wide significant loci are highlighted as 
green diamonds.
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statistics are likely to share a single causal variant. Similarly, HEIDI was 
used to select SMR associations for which the same causal variant 
affects gene expression and trait variation. Of the 48 genes implicated 
by at least two gene-based tests, 25 were also significant in either the 
TWAS-COLOC or the SMR-HEIDI tests, suggesting causality (Fig. 2a). 
Only 2 of these 25 genes were prioritized by both TWAS-COLOC and 
SMR-HEIDI: WDR6 (WD repeat domain 6) and DALRD3 (DALR anticodon 
binding domain-containing 3). Another gene of interest, CTNND1 
(catenin δ1), was implicated by three of our five approaches (multivari-
ate set-based association test (mBAT-combo), TWAS, PWAS) and 
showed evidence for colocalization. Only three genes were implicated 
in the PWAS; of these, CTNND1 was the only gene also implicated  

in the TWAS. In the PWAS, downregulation of CTNND1 protein expres-
sion in the human dorsolateral prefrontal cortex (dlPFC) was  
significantly associated with OCD risk (Z = −4.49,P = 7.11 × 10−6 ; 
Supplementary Table 13), consistent with the downregulation of 
CTNND1 gene expression in the prefrontal cortex seen in the TWAS 
(Z = −6.86,P = 6.90 × 10−12; Supplementary Table 10). For a discus-
sion of the overlap between the gene findings with rare coding variants 
in OCD, see Supplementary Table 6 and Supplementary Note 7.

Tissue and cell type enrichment analysis
After mapping significantly associated SNPs from the GWAS 
meta-analysis to likely causal genes, we explored which tissues or cell 

Table 1 | Genome-wide-significant loci associated with OCD

SNP Position P value OR s.e. A1/A2 FRQCA FRQCO INFO n genes Selection of other significant traits

rs78587207a 11q12.1 5.28 × 10−12 0.9522 0.0071 T/G 0.681 0.677 0.987 11 SCZ, well-being, neuroticism,  
educational attainment

rs13262595 8q24.3 1.31 × 10−11 0.9566 0.0066 G/A 0.552 0.561 0.989 2 SCZ, well-being, neuroticism,  
educational attainment

rs4990036a 6p21.33 1.45 × 10−11 0.9299 0.0108 T/C 0.119 0.123 0.985 118 SCZ, depression, blood cell count, lung function

rs10877425a 12q14.1 1.62 × 10−11 0.9526 0.0072 G/A 0.513 0.516 0.985 0 –

rs7626445a 3p21.31 1.74 × 10−11 0.9551 0.0068 T/C 0.647 0.654 0.994 32 Neuroticism, smoking, blood cell count, height

rs2564930a 3p21.1 3.41 × 10−11 0.9546 0.007 T/C 0.339 0.345 0.988 12 SCZ, neuroticism, blood cell count, BMI

rs4702a 15q26.1 9.07 × 10−10 1.0414 0.0066 G/A 0.455 0.449 0.984 5 SCZ, BP, MDD, risk-taking behavior

rs35518360a 4q24 1.39 × 10−9 1.0757 0.0121 T/A 0.0828 0.0756 0.947 1 SCZ, neuroticism, educational attainment, BMI

rs4904738 14q21.1 1.48 × 10−9 0.9605 0.0067 T/C 0.558 0.553 0.984 1 MDD

rs254779 5q14.3 1.53 × 10−9 0.9606 0.0067 T/C 0.419 0.421 0.988 4 Educational attainment, cognition, fat mass

rs2198140a 8p12 2.18 × 10−9 0.9590 0.007 T/C 0.496 0.513 0.979 1 Cognition

rs12516488a 5p12 3.79 × 10−9 1.0531 0.0088 G/A 0.825 0.826 0.994 1 Neuroticism, age at first birth, age at first  
sexual intercourse

rs3899258a 5q11.1 4.94 × 10−9 1.0509 0.0085 G/A 0.782 0.792 0.989 2 –

rs3027160 17p13.1 5.35 × 10−9 1.0497 0.0083 T/C 0.775 0.782 0.996 19 Sleep, height

rs203768 2q33.1 6.14 × 10−9 0.9513 0.0086 T/C 0.824 0.817 0.992 5 SCZ

rs11263940 1p34.3 7.23 × 10−9 0.9578 0.0074 T/C 0.689 0.69 0.991 0 Neuroticism, well-being

rs67839857a 5q14.3 7.63 × 10−9 1.0423 0.0072 G/A 0.692 0.691 0.994 0 –

rs1555466 20p11.23 8.42 × 10−9 1.0490 0.0083 T/C 0.218 0.224 0.996 0 Ease of skin tanning

rs9886111 7q21.13 8.59 × 10−9 0.9598 0.0071 G/C 0.701 0.711 0.992 2 –

rs9287859 2q24.3 9.83 × 10−9 0.9595 0.0072 G/A 0.39 0.39 0.994 1 –

rs2087319 4q12 1.59 × 10−8 0.9579 0.0076 C/A 0.74 0.744 0.968 6 Height, blood pressure

rs11125759a 2p16.1 1.79 × 10−8 0.9690 0.0071 G/A 0.569 0.556 0.991 1 BMI, sleep

rs6474628 9p23 1.89 × 10−8 1.0380 0.0066 T/G 0.579 0.585 0.999 0 –

rs11768238 7q33 2.28 × 10−8 0.9601 0.0073 G/A 0.661 0.661 0.998 2 Educational attainment, age at first  
sexual intercourse

rs9479138 6q25.1 2.41 × 10−8 1.0397 0.007 T/G 0.339 0.34 0.975 1 Educational attainment, age at first sexual 
intercourse, age at first birth, lung function

rs1567288 4q22.3 3.80 × 10−8 0.9643 0.0066 G/A 0.548 0.55 0.981 1 –

rs4831130 3q13.31 3.93 × 10−8 1.0427 0.0076 T/G 0.753 0.74 0.984 2 –

rs17718444 3p13 4.25 × 10−8 0.9622 0.007 T/C 0.323 0.32 0.984 2 Educational attainment, lung function, use of 
sun/UV protection

rs6660196a 1q24.1 4.86 × 10−8 1.0403 0.0072 T/G 0.638 0.642 0.989 1 Blood cell count

rs4931 20q13.12 5.00 × 10−8 0.9609 0.0073 C/A 0.278 0.279 0.993 5 Blood cell count, height, BMI

Shown are the lead SNP, the chromosome, base pair position on the genome, P value, effect estimate as an odds ratio (OR), s.e., effect allele and non-effect allele (A1 and A2), frequency of A1 in 
cases (FRQCA) and in controls (FRQCO), imputation quality score (INFO), number of genes in a region of 6.5 kb around the SNP (n genes) and a curated list of phenotypes that also showed a 
genome-wide significant association with this SNP (in one or more of the following four databases: CAUSALdb90, GenomeAtlas52, the NHGRI-EBI GWAS Catalog91, the IEU Open GWAS project92). 
If fewer than four traits are significant across all four databases, all four traits are shown. If more than five traits are significant across the databases, neuropsychiatric traits are prioritized 
(closely related traits are summarized into one trait category). For a full list of associations in the four databases, see Supplementary Table 18a–d. A more detailed list of the significant loci can 
be found in Supplementary Table 2. Abbreviations in the last column are SCZ, schizophrenia; BP, bipolar disorder; MDD, major depressive disorder; UV, ultraviolet.  aPreviously identified GWAS 
hits for OCD (or SNPs in high linkage disequilibirum with a previously identified SNP).
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types showed enriched gene expression of OCD-associated genetic 
signals using a previously described approach29 on published human 
gene expression datasets from bulk tissue RNA-seq data from the Geno-
type–Tissue Expression (GTEx) project and single-cell RNA-sequencing 
data from the adult mouse central and peripheral nervous systems30. We 
found enrichment of OCD GWAS signals in six of 13 human brain tissue 
types in GTEx but no enrichment in human peripheral tissues (Fig. 2b 
and Supplementary Table 15). In the adult mouse central and peripheral 
nervous systems, we found enrichment of OCD GWAS signals in 41 of 166 
tested specific single cell types using the MAGMA gene set enrichment 
test (Supplementary Table 16). When summarizing results of individual 
single cell types into groups of cell types defined by the same region 
or tissue and cell type, nine of 35 were enriched for OCD GWAS signals 
(top 20 shown in Fig. 2c). Strong enrichment of OCD GWAS signal was 
especially observed in excitatory neurons of the hippocampus and the 
cerebral cortex as well as in D1 and D2 medium spiny neurons (MSNs).

Genetic relationship of OCD with other phenotypes
Using phenome-wide association analysis, we examined whether the 30 
independent OCD-associated loci identified by our GWAS meta-analysis 
have previously been associated with other phenotypes (see Supple-
mentary Tables 17a–d for lookups in four, partially overlapping GWAS 
databanks and Table 1 for highlighted associations). We found that 
22 of the 30 loci were associated with other phenotypes, including 

schizophrenia (seven loci), depression and major depressive disor-
der (two loci), bipolar disorder (one locus), neuroticism (seven loci), 
educational attainment (seven loci) and body fat mass or body mass 
index (eight loci).

We further used bivariate linkage disequilibrium score regression 
(LDSC)31 to investigate the extent of genetic correlations between OCD 
and 112 previously published GWASs encompassing psychiatric, sub-
stance use and neurological phenotypes, among others (Fig. 3). We 
found that 65 phenotypes were significantly correlated with OCD after 
correcting for multiple testing using the Benjamini–Hochberg32 pro-
cedure to control the false discovery rate (FDR) at a threshold of 0.05. 
OCD was significantly positively correlated with all tested psychiatric 
phenotypes; the highest correlations were with anxiety (rG = 0.70), 
depression (rG = 0.60), anorexia nervosa (rG = 0.52), Tourette syn-
drome (rG = 0.47 ) and post-traumatic stress disorder (PTSD; 
rG = 0.48). Significant positive genetic correlations were also obtained 
for neuroticism (rG = 0.53), in particular for the worry subcluster 
(rG = 0.64), and all individual items in the worry subcluster, with 
slightly lower estimates for the depressive subcluster (rG = 0.35). 
Suicide attempt (rG = 0.40), history of childhood maltreatment 
(rG = 0.37) and tiredness (rG = 0.36) were also notable for strong posi-
tive associations with OCD. Of the assessed neurological disorders, 
OCD was only significantly correlated with migraine (rG = 0.15). Some 
autoimmune disorders, such as Crohn’s disease (rG = −0.13), ulcerative 
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Fig. 2 | Gene-based, tissue and cell type enrichment analyses. a, List of 25 
genes that were implicated in at least two of the five different gene-based tests 
(significance indicated by gray dots) and passed the TWAS colocalization and/or  
SMR-HEIDI filters (significance indicated by orange dots). Conditionally 
independent (cond. ind.) genes within each locus are indicated by blue dots. 
b, Enrichment of OCD GWAS signal in human brain-related tissues from GTEx 
(version 8). No significant enrichment was observed in the peripheral tissues (not 
included in the figure). The horizontal bar size represents the significance of the 
enrichment measured using the MAGMA gene set enrichment test or partitioned 
LDSC. c, Top 20 groups of brain cell types (n = 35 total tested) enriched with OCD 

GWAS signal using MAGMA. Dots represent −log10(P values) from MAGMA gene 
set enrichment tests of individual neuronal cell types from Zeisel et al.30. Vertical 
crosses represent the mean −log10(P value) observed for each brain cell type 
group. Blue crosses represent a significant enrichment of OCD GWAS signals 
(FDR across 35 groups, FDR < 0.05), while pink crosses indicate nonsignificant 
enrichment. Gray points represent the association (−log10(P value)) for each 
single cell cluster (‘level 5’ analysis defined by Zeisel et al.30) in a given cell type 
(for example, excitatory neurons, cerebral cortex). CCK, cholecystokinin-
expressing; R-LM, stratum radiatum-stratum lacunosum-moleculare.
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colitis (rG = −0.14 ) and inflammatory bowel disease (rG = −0.14 ), 
showed negative correlations with OCD (see Fig. 3 and Supplementary 
Table 18 for all genetic correlation estimates, 95% confidence intervals 
and P values, Supplementary Note 6 for a more in-depth discussion of 
all significant genetic correlations and Supplementary Table 19 and 
Supplementary Figs. 41 and 42 for subgroup-specific genetic correla-
tion estimates).

Discussion
The OCD GWAS reported here, comprising over 53,000 cases, identified 
30 independent genome-wide significant loci. Common SNPs explained 
6.7% of the variation in OCD risk in our meta-analysis (LDSC with an 
assumed population prevalence of 1%), a significant reduction from 
the 28% reported previously10. However, differences in the assumed 
population prevalence (where a lower assumed prevalence for LDSC 
heritability calculation results in a lower heritability estimate) and an 
increase in sample heterogeneity likely contributed to this discrepancy. 
The reduction in SNP heritability is in line with previous observations 
for closely related psychiatric disorders such as attention deficit hyper-
activity disorder (ADHD)33,34 or depression17,35–37, where expanding the 
phenotype definition increased genetic heterogeneity, potentially 
accounting for the observed decrease in SNP heritability. This aligns 
with the fact that heritability estimates for more homogeneous OCD 

subgroups were higher: 16.4% for the clinically ascertained subgroup 
and 13.3% for the comorbid subgroup (Supplementary Note 10). The 
current estimates are comparable to those of other psychiatric and sub-
stance use disorders, with SNP heritability estimates ranging between 
9% and 28%38.

The most significant SNP (rs78587207 (P = 5.28 × 10−12)) identi-
fied in the GWAS is located on chr11q12.1 and has been previously 
associated with several traits, including neuropsychiatric pheno-
types39 such as depressive symptoms40 and neuroticism40. Gene-based 
analyses identified four putative causal genes within this locus. The 
closest gene to rs78587207 is CTNND1, which encodes the cell adhesion 
molecule p120 catenin. This gene was associated with OCD using three 
gene-based tests (mBAT-combo, TWAS and PWAS), and we found 
strong evidence for colocalization of the TWAS signal for CTNND1 in 
the dlPFC. The dlPFC has been consistently implicated in the neural 
circuitry of OCD as well as in compulsivity more broadly as part of the 
cortico–striatal–thalamo–cortical circuitry41,42. The protein product 
of CTNND1 is a regulator of cell–cell adhesion43 and has a crucial role 
in gene transcription, Rho GTPase activity and cytoskeletal 
organization44–46. Other credible causal genes in the locus include  
CLP1 (cleavage factor polyribonucleotide kinase subunit 1), TMX2 
(thioredoxin-related transmembrane protein 2) and ZDHHC5 (zinc 
finger DHHC type palmitoyltransferase 5). Rare genetic mutations in 
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Fig. 3 | Genetic correlations (rG) between OCD and 112 phenotypes.  
This includes psychiatric, substance use, cognition–socioeconomic status 
(SES), personality, psychological, neurological, autoimmune, cardiovascular 
(cardiovasc.), anthropomorphic–diet, fertility and other phenotypes. References 
and sample sizes of the corresponding summary statistics of the GWAS studies 
can be found in Supplementary Table 18. The OCD summary statistics are of the 
main meta-analysis (ncases = 53,660 and ncontrols = 2,044,417). Error bars represent 
the 95% confidence intervals for the genetic correlation estimates (rG). Red circles 

indicate significant associations with a P value adjusted for multiple testing with 
the Benjamini–Hochberg procedure to control the FDR (<0.05). Black circles 
indicate associations that are not significant. a., after; ADHD, attention-deficit 
hyperactivity disorder; ALS, amyotrophic lateral sclerosis; BMI, body mass 
index; embarras., embarrassment; freq, frequency; fr., from; HDL, high-density 
lipoprotein; IQ, intelligence quotient; LDL, low-density lipoprotein; neurot., 
neuroticism; nr., number; PTSD, post-traumatic stress disorder; sat., satisfaction; 
VN, verbal-numerical.
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CLP1 are associated with pontocerebellar hypoplasia type 10, a very 
rare autosomal recessive neurodegenerative disease characterized 
by brain atrophy and delayed myelination resulting in intellectual 
disability47. TMX2 is associated with increased risk of neurodevelop-
mental disorders with microcephaly, cortical malformations, spastic-
ity and congenital nervous system abnormalities48. ZDHHC5 is broadly 
expressed in the brain, including the frontal cortex. ZDHHC5 has not 
been implicated in brain development but has been linked to lung 
acinar adenocarcinoma and lung papillary adenocarcinoma in  
prior studies49.

Our finding that approximately 11,500 (s.e. = 607) causal vari-
ants account for 90% of the SNP-based heritability of OCD suggests 
that OCD is more polygenic than other complex traits such as height 
(ncausal = 4,000), schizophrenia (ncausal = 9,600) and ADHD (ncausal = 5,600) 
but less polygenic than major depression (ncausal = 14,500) and educa-
tional attainment (ncausal = 13,200)50.

We identified a total of 25 credible causal genes based on robust evi-
dence using multiple positional and functionally informed gene-based 
approaches. Notably, DLGAP1, which has been previously implicated 
in OCD pathogenesis10,51, was not identified in either the GWAS or in 
the gene-based analyses. Of the 25 genes that were implicated, 15 were 
within 6.5 kb of a SNP that surpassed genome-wide significance in the 
meta-analysis. In addition to the four genes discussed above, several 
others are of particular interest, including WDR6 and DALRD3, which 
had the strongest evidence from the gene-based analyses. These genes 
lie in a gene-rich region on chr3p21.31, which, in addition to harboring 
multiple genome-wide significant SNPs, has been previously associated 
with a broad range of psychiatric disorders and related traits, including 
schizophrenia39, well-being52 and the worry subcluster of neuroticism53.

WDR6 is broadly expressed in the brain, particularly the hypo-
thalamus. Its protein product is involved in cell growth arrest54, and 
recent studies have implicated it in anorexia nervosa55 and Parkinson’s 
disease56. DALRD3 is located on chromosome 3 in the same region as 
WDR6. DALRD3, when fully disrupted, is implicated in a form of epilep-
tic encephalopathy with associated developmental delay57. Finally, a 
third gene in the 3p21 locus, CELSR3 (cadherin EGF LAG seven-pass G 
type receptor 3), encodes a protocadherin that is highly expressed in 
the developing basal ganglia58. Multiple loss-of-function mutations 
in CELSR3 have been associated with Tourette syndrome59,60, which 
co-occurs with OCD in 10–20% of patients.

Four other genes identified through these analyses are located 
in the MHC locus, a region on chromosome 6 that has a major role 
in the adaptive immune system and has been repeatedly linked to 
major psychiatric disorders61. The newly identified MHC association 
for OCD is noteworthy given evidence linking OCD with autoimmune 
disorders62–64. Genetic pleiotropy may underlie this connection, with 
variants predisposing individuals to both autoimmune conditions and 
OCD65. Furthermore, some OCD subtypes, such as pediatric acute-onset 
neuropsychiatric disorders associated with Streptococcus and pediat-
ric acute-onset neuropsychiatric syndrome, may have autoimmune 
origins66,67. Nevertheless, we were surprised to discover several nega-
tive genetic correlations between OCD and autoimmune disorders 
such as Crohn’s disease, ulcerative colitis and inflammatory bowel 
disease in our analyses, suggesting that there is heterogeneity (and 
perhaps pleiotropy) in the genetic relationships between autoimmune 
disorders and OCD.

Tissue and cell type enrichment analysis revealed significant 
enrichment of OCD SNP heritability in several tissues and cell types, 
with the strongest enrichment in excitatory neurons of the hippocam-
pus and the cerebral cortex and in dopamine D1 receptor (D1R)-positive 
and dopamine D2 receptor (D2R)-positive MSNs in the striatum. These 
findings are in line with traditional neural circuitry models of OCD, 
which focus on frontal cortical–striatal pathways68,69. These findings 
are consistent with and build on previous work linking various neuronal 
cell types to psychiatric and cognitive phenotypes70.

Interestingly, the frontal and anterior cingulate cortices, which 
were enriched in our tissue-based analyses, as well as the hippocampus 
and the striatum, which were implicated in our cell type-based analyses, 
are among the regions that are consistently implicated in neuroimaging 
studies of OCD41,71–73. Enrichment in MSNs in the striatum is consistent 
with their role in the observed aberrant circuitry in OCD, where the D1 
MSNs project to the globus pallidus interna and the substantia nigra in 
the direct pathway and the D2 type MSNs project to the globus pallidus 
externa in the indirect pathway74. However, MSNs are also enriched in 
major depressive disorder75, schizophrenia76 and intelligence77, sug-
gesting that the observed enrichment is not specific for OCD.

Our analyses of the shared genetic risk between OCD and other 
psychiatric disorders provides further insights into the etiology of 
OCD. In line with previous observations38,78, OCD was significantly 
genetically correlated with multiple psychiatric disorders and traits. 
The strongest genetic correlations were observed for anxiety disorders, 
depression and anorexia nervosa, all of which are highly comorbid 
with OCD79. This aligns with previous findings from cross-disorder 
analyses suggesting a shared genetic susceptibility among most 
psychiatric disorders38,80,81. A notable exception is our finding that 
risk variants for OCD are protective for alcohol dependence82, which 
is at odds with epidemiological evidence strongly linking OCD and 
alcohol-related disorders83 but in line with a recent paper79 reporting a 
lower-than-expected lifetime comorbidity of substance use disorders 
in OCD. The observed pattern of correlations with other phenotypes 
can be thought of as falling into two categories: compulsivity–impul-
sivity and rumination–worry–neuroticism. In both categories, the 
patterns of genetic correlations appear to follow a gradient across 
disorders and traits. For example, in the compulsivity–impulsivity 
category, strong positive correlations are seen with anorexia nervosa 
and Tourette syndrome, which are disorders with strong compulsive 
features, with less positive associations seen with ADHD and negative 
correlations with alcohol dependence and risk-taking behaviors, which 
are all phenotypes characterized by impulsivity. A similar gradient is 
observed for the rumination–worry–neuroticism-related phenotypes, 
with strong positive correlations with anxiety and other ruminative 
phenotypes such as worry, transitioning to less strong correlations 
with individual depression-related items.

This study marks the transition from the flat (sample-building) 
phase of SNP discovery described for GWAS84 (Supplementary Fig. 20), 
where few to no genome-wide significant loci are identified10,12,51,85, to 
the linear phase of SNP discovery, where even relatively small increases 
in sample size identify additional genome-wide significant loci18. The 
strengths of the current study therefore include the marked increase in 
the number of OCD cases and the rigorous analytic methods, including 
two multivariate approaches (multi-trait analysis of GWAS (MTAG) and 
GenomicSEM) to control for potential overlapping study participants 
and to examine potential heterogeneity between the multiple ascer-
tainment approaches. Potential weaknesses include the inability to 
document comorbid psychiatric disorders in the majority of cases that 
were not ascertained from clinical collections or electronic registries, 
the lack of inclusion of non-European ancestries and the limited avail-
ability of sex chromosome data. Owing to the nature of our study, 
imputation references used in the different cohorts were heterogene-
ous and did not allow for confident analysis of rare variant associations. 
Future larger-scale sequencing studies that are currently underway will 
be needed to identify associations in this allele frequency spectrum. 
We also note that the genetic correlation analyses are impacted by 
residual heterogeneity in genetic signals owing to the employment of 
heterogeneous ascertainment strategies.

In summary, this work substantially advances the field of OCD 
genetics by identifying new OCD genetic risk loci and multiple credible 
candidate causal genes, including those expressed in brain regions 
and cell types previously implicated in OCD86. We have also shown 
that OCD is highly polygenic in nature, with many variants implicated 
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not only in OCD but also in commonly comorbid disorders or traits, 
in particular, anxiety, neuroticism, anorexia nervosa and depres-
sion. The observation that common variants explain only a modest 
amount of the phenotypic variation in OCD suggests that other types of 
genetic variation may also contribute to the etiology of OCD. Notably, 
whole-exome-sequencing studies have suggested that a substantial 
proportion of OCD cases (22%) may be influenced by rare de novo 
coding variants87, especially in genes that are intolerant to loss of func-
tion88. Similarly, rare potentially damaging copy number variations rep-
resent part of the risk architecture for OCD9. These findings emphasize 
the need for a comprehensive exploration of the contribution of both 
common and rare genetic factors as well as their interplay to OCD risk. 
Finally, with the implication of the MHC complex, we provide additional 
evidence for potential shared genetic influences underlying both OCD 
and increased liability to autoimmune processes, although the direc-
tionality of those relationships remains to be definitively elucidated. 
In addition to continuing to increase sample sizes, future studies will 
require ancestrally diverse samples to further facilitate the discovery 
of additional OCD risk variants. Similarly, sex-specific analyses and 
additional clinical phenotyping will allow for the further elucidation 
of genetic and clinical relationships between OCD and co-occurring 
disorders. Finally, with the emergence of drug databases describing 
the relations between drugs and molecular phenotypes89, our results 
may be useful for drug repurposing (that is, identifying existing drugs 
targeting OCD risk genes), leading to new opportunities to find more 
effective treatments.
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Methods
Ethics
All relevant ethics approvals have been obtained by the respective 
cohort’s institutions, and a list of all respective approvals can be found 
in Supplementary Note 2.

Study participants
We analyzed genomic data from 28 OCD case–control cohorts includ-
ing 53,660 OCD cases and 2,044,417 controls of European ancestry. 
Supplementary Table 1 provides an overview of the individual cohorts. 
A subset of the cases and controls have been included in previous 
studies10,51,85 and preprints12,13, as described in Supplementary Note 
2. Among all included individuals, 323 cases were part of a parent–
proband trio; in these cases, parents were used as pseudocontrols. A 
total of 20,427 cases met DSM-5 (ref. 93) or ICD-10 (https://icd.who.int/) 
criteria for OCD as assessed by a healthcare professional or derived 
from (electronic) health records, while the remaining 32,233 cases 
were based on self-reported OCD diagnosis (23andMe, AGDS and parts 
of UKBB). Cohort-specific sample and analytic details can be found in 
Supplementary Note 2. Data collections were approved by the relevant 
institutional review boards at all participating sites, and all participants 
provided written informed consent.

Individual GWAS analyses and harmonizing of results
First, the data of each participating cohort were analyzed individually 
(see Supplementary Note 2 for details). Genetic data were imputed 
using either the Haplotype Reference Consortium (HRC)94 or 1000 
Genomes Project Phase 3 reference panels95. The resulting GWAS sum-
mary statistics were then harmonized before a conjoint meta-analysis 
of all autosomes was conducted. Each summary statistic dataset was 
transformed to the ‘daner’ file format following RICOPILI96 specifica-
tions. All variants had to meet the following criteria for inclusion: minor 
allele frequency (MAF) > 1% in cases and controls, INFO score > 0.8 
and <1.2. If the effect measure, P value or s.e. was missing or was out 
of bounds (infinite), the SNP was removed. Once cleaned summary 
statistics were produced, all datasets were aligned to the HRC ref-
erence panel. If variants were reported on different strands, they 
were flipped to the orientation in the HRC reference. Furthermore, 
strand-ambiguous A/T and C/G SNPs were removed if their MAF was 
>0.4. In the case that A/T and C/G SNPs showed a MAF < 0.4, allele 
frequencies were compared to frequencies in the HRC reference. If an 
allele frequency match was found, that is, minor alleles were the same 
in the summary statistics and the HRC reference, the same strand 
orientation was assumed. If an allele mismatch was found, that is, the 
allele had a frequency > 0.5 in the HRC reference, it was assumed that 
alleles were reported on different strands, and alleles were flipped 
subsequently. Marker names were uniformly switched to those present 
in the HRC reference. If a variant did not overlap with the variants in the 
HRC reference, it was removed.

GWAS meta-analysis
Inverse-variance-weighted meta-analysis was conducted on 28 Euro-
pean cohorts using METAL97. Weighting was based on standard error 
primarily to account for the large case–control imbalances in cohorts 
that used linear mixed model approaches in their primary GWAS. 
Heterogeneity was assessed with Cochran’s Q statistic and the I2 
statistic98,99 (see Supplementary Note 5 for details). The genomic con-
trol factor lambda (λ) was calculated for each individual GWAS and for 
the overall meta-analysis to identify residual population stratification 
or systematic technical artifacts. GWAS summary statistics were sub-
jected to LDSC analyses on high-quality common SNPs (INFO 
score > 0.9) to examine the LDSC intercept to distinguish polygenicity 
from other types of inflation and to estimate the genetic heritability 
from the meta-analysis and genetic correlations between cohorts. The 
genomic inflation factor λ was estimated at 1.330 with a λ1000 of 1.033, 

while the LDSC intercept was 1.0155 (s.e. = 0.0085), indicating that the 
inflation was mostly due to polygenic signal and unlikely to be substan-
tially confounded by population structure. The genome-wide signifi-
cance threshold for the GWAS was set at a P value of 5.0 × 10−8. The 
23andMe data included information on the X chromosome; as this 
information was not present for all other cohorts, analysis of the X 
chromosome was only conducted in this subcohort (see Supplemen-
tary Note 4 for details).

We further conducted GWAS meta-analyses on the following four 
subgroups, defined by differences in their sample ascertainment: (1) 
clinical OCD cases diagnosed by a healthcare professional in a clini-
cal setting (ncases = 9,089, ncontrols = 21,077; including IOCDF, IOCDF_
trio, EPOC, NORDiC-nor, NORDiC-swe, EGOS, OCGAS, OCGAS-ab, 
OCGAS-gh, OCGAS-nes, Psych_Broad, WWF, MVP, Michigan/Toronto 
IGS, YalePenn, Chop, CoGa), (2) comorbid individuals who were 
primarily ascertained for another comorbid psychiatric disorder 
(ncases = 5,266, ncontrols = 43,760; AGDS, iPSYCH), (3) biobank data from 
large-scale biobanks or registries with ICD or DSM codes (ncases = 9,138, 
ncontrols = 1,049,776; BioVU, EstBB, FinnGen, HUNT, MoBa, UKBB) or (4) 
23andMe data (ncases = 30,167, ncontrols = 929,804). While these groups 
are not exclusive (for example, diagnoses in health records were origi-
nally given in a clinical setting or comorbid cases were also assessed 
in a clinical setting or derived from health records), we defined these 
groups by the cohort’s primary characteristic. We also conducted 
one meta-analysis including all clinical, comorbid and biobank sub-
groups, while excluding the 23andMe data, resulting in 23,493 cases 
and 1,114,613 controls. As 23andMe is the only consumer-based dataset, 
we intended to compare this dataset to all others.

Number of trait-specific causal variants (MiXeR analysis)
We applied MiXeR version 1.3 (ref. 15) to quantify the polygenicity of 
OCD (that is, estimate the total number of trait-influencing genetic 
variants). MiXeR fits a Gaussian mixture model assuming that common 
genetic effects on a trait are a mixture of causal variants and noncausal 
variants. Polygenicity is reported as the number of causal variants that 
explain 90% of SNP heritability of OCD (to avoid extrapolating model 
parameters into the area of infinitesimally small effects).

SNP-based fine-mapping (GCTA-COJO)
We performed a conditional and joint analysis (GCTA-COJO)14 to iden-
tify independent signals within significant OCD loci. This approach 
performs a conditional and joint analysis on the basis of conditional P 
values before calculating the joint effects of all selected SNPs. We used 
the stepwise model selection procedure to select independently associ-
ated SNPs. The linkage disequilibrium reference sample was created 
from 73,005 individuals from the QIMR Berghofer Medical Research 
Institute genetic epidemiology cohort. The distance assumed for 
complete linkage disequilibrium was 10 Mb, and we used the default 
P-value threshold of 5 × 10−8 to define a genome-wide significant hit.

Multi-trait analysis of ascertainment subgroups
We used MTAG100 to conduct multivariable GWAS analyses, report-
ing GWAS results for each of the ascertainment-specific subgroups. 
Through this approach, we aimed to address potential concerns about 
heterogeneity in genetic liability for individual subgroups follow-
ing different ascertainment strategies. MTAG is a multi-trait analysis 
that is usually used to combine different but related traits into one 
meta-analysis by leveraging the shared heritability among the dif-
ferent traits and thereby gaining power. In this case, our aim was to 
generate ascertainment-specific estimates, while boosting power by 
leveraging the high shared heritability between the subgroups. The 
MTAG analysis resulted in four different GWAS summary statistics, 
one for each subgroup (clinical, comorbid, biobanks, 23andMe). We 
performed maxFDR analyses to approximate the upper bound on the 
FDR of MTAG results.
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GenomicSEM
Similarly, we used GenomicSEM16 to model the joint genetic architec-
ture of the four subgroups. First, we ran a common factor model 
without individual SNP effects, following the tutorial ‘Models without 
individual SNP effects’ on the GenomicSEM GitHub website (Code 
availability). Second, we ran a multivariate GWAS of the common factor 
(see Supplementary Note 5 for details). We specified the model using 
unit variance identification, for which the latent factor variance is 
fixed to 1 and the loadings of the traits are estimated freely. This 
ensures that we capture how much of each subgroup contributes to 
the latent factor. GenomicSEM also generates QSNP values, which indi-
cate possible heterogeneous effects across the subgroups. The QSNP 
statistic is mathematically similar to the Q statistic from standard 
meta-analysis and is a X2-distributed test statistic, with larger values 
indexing a violation of the null hypothesis that the SNP acts entirely 
through the common factor.

SNP heritability estimation
The proportion of the phenotypic variance that could be explained by 
the aggregated effect of all included SNPs (SNP-based heritability, h2

SNP) 
was estimated using LDSC31. The analysis was performed using precom-
puted linkage disequilibrium scores from samples restricted to Euro-
pean ancestry in the 1000 Genomes Project95, filtered for SNPs included 
in the HapMap 3 reference panel101. SNP heritability was estimated 
based on the slope of the LDSC, with heritability on the liability scale 
calculated assuming a 1% population prevalence of OCD1. To omit a 
downward bias in our estimates of liability-scale heritability, following 
Grotzinger et al.102, we accounted for varying levels of ascertainment 
across cohorts in our meta-analysis by summing the effective sample 
sizes across the contributing cohorts and using that as the input sample 
size for LDSC. For conversion to the liability scale (1%), the sample 
prevalence was then specified as 0.5. The SNP heritability was calcu-
lated for the whole OCD sample as well as for ascertainment-specific 
subgroups.

Genetic correlations
We used cross-trait LDSC31, a method that computes genetic corre-
lations between GWASs without bias from ancestry differences or 
sample overlap to calculate genetic correlations between the pri-
mary OCD meta-analysis and other phenotypes of interest. The 
selection of traits was based on phenotypic relevance and/or prior 
report of a genetic relationship with OCD. The genetic correlation 
between traits was based on the estimated slope from the regres-
sion of the product of Z scores from two GWASs on the linkage dis-
equilibrium score and represents the genetic covariation between 
two traits based on all polygenic effects captured by the included 
SNPs. The genome-wide linkage disequilibrium information used 
by these methods was based on European populations from the 
HapMap 3 reference panel101, and GWAS summary statistics were fil-
tered to only include SNPs that were part of the 1,290,028 HapMap  
3 SNPs.

To ensure the internal consistency of the datasets included in our 
meta-analysis, we calculated genetic correlations between all cohorts 
we considered to have a sample size large enough for LDSC (effective 
sample size of ≥1,000) and between the four ascertainment-specific 
subgroups.

We further calculated genetic correlations between OCD and 112 
other disorders and traits. The source studies of the GWAS summary 
statistics can be found in Supplementary Table 18. As a follow-up, 
we also calculated genetic correlations between the 112 pheno-
types and each ascertainment-specific subcohort and compared 
the genetic correlation patterns between the four groups. For all 
cross-phenotype genetic correlation analyses, we adjusted P values 
for multiple testing using the Benjamini–Hochberg procedure to 
control for the FDR (<0.05).

Gene-based analyses
To match the significant SNPs to the genes for which they likely 
influence function, we conducted a series of positional and func-
tional gene-mapping analyses. The positional mapping employed 
MBAT-combo19, while the functional mapping tested whether genetic 
variants associated with OCD were also associated with differential 
expression of nearby genes (within a 1-Mb window) using (1) TWAS20 
using PsychENCODE data and included colocalization with COLOC27,28, 
and (2) SMR22 using whole-blood eQTL information and brain tissues 
from MetaBrain, alongside the HEIDI test, which tests for heterogeneity 
in GWAS signal and eQTL association. Furthermore, a PWAS was con-
ducted. As a final step, genes within each locus were prioritized using 
PsyOPS26, which integrates both positional and functional information. 
The details of each method are described below.

Positional gene mapping (MBAT-combo)
A gene-based analysis was conducted using mBAT-combo19 within GCTA 
version 1.94.1 (ref. 14). The European subsample (n = 503 individuals) 
from phase 3 of the 1000 Genomes Project95 was used as the linkage 
disequilibrium reference panel with the fastBAT default linkage disequi-
librium cutoff of 0.9 applied. After filtering SNPs with MAF > 0.01, there 
were 6,629,124 SNPs for analysis in our sample. A gene list consisting of 
19,899 protein-coding genes was used to map the base pair position of 
genes using genome build hg19 (see Supplementary Note 7 for details).

Functional gene mapping
Transcriptome-wide association study. We used TWAS FUSION20 to 
perform a TWAS of OCD. We used brain gene expression weights from 
the PsychENCODE103 and linkage disequilibrium information from the 
1000 Genomes Project Phase 3 (ref. 95). TWAS FUSION uses reference 
linkage disequilibrium and reference gene expression panels with 
GWAS summary statistics to estimate the association between gene 
expression and OCD risk. These data were processed with the test statis-
tics from the OCD GWAS to estimate the expression–GWAS association 
statistic. We corrected for multiple testing using Bonferroni correction.

We performed colocalization analyses using the COLOC R 
function27,28 implemented in TWAS FUSION. Colocalization is a Bayes-
ian method used to calculate the posterior probabilities (PP) that indi-
vidual lead SNPs within a significant TWAS locus are (1) independent 
(for example, two causal SNPs in linkage disequilibrium, one affecting 
transcription and one affecting OCD; PP3) or (2) share the same associ-
ated variant (for example, a single causal SNP affects both transcription 
and OCD (PP4)). We also performed a conditional analysis to determine 
whether identified associations represented independent associations. 
This was performed using the FUSION software, which jointly estimates 
the effect of all significant features within each locus by using residual 
SNP associations with OCD after accounting for the predicted expres-
sion of other features.

Summary-based Mendelian randomization. SMR22 was performed 
using default settings and eQTL meta-analysis summary statistics from 
European populations for whole blood from eQTLGen23 and all five 
nervous system tissues from MetaBrain (basal ganglia, cerebellum, 
cortex, hippocampus and spinal cord)104. The HEIDI test was performed 
alongside SMR to test for effect size heterogeneity between the GWAS 
and eQTL summary statistics. Both SMR and TWAS have a number of 
important assumptions and limitations, which we discuss in Supple-
mentary Note 9.

Psychiatric omnilocus prioritization score
We used the gene prioritization method PsyOPS26 to rank genes within 
genome-wide significant loci. This supervised approach integrates bio-
logical annotations on mutational intolerance, brain-specific expres-
sion and involvement in neurodevelopmental disorder for genes within 
significant loci. Genes with the top PsyOPS score within each locus 
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were used for further gene prioritization (Gene prioritization). In the 
instance where two genes in the same locus had the same PsyOPS score, 
the gene nearest the index SNP was prioritized.

Protein-wide association study
We performed a PWAS using protein expression data from human brain 
samples. Human brain proteome reference weight data were obtained 
using the Religious Orders Study and Rush Memory and Aging Project 
(ROS/MAP) and the Banner Sun Health Research Institute (Banner) 
study. The ROS/MAP proteomes were generated from the dlPFC of 
376 participants of European ancestry and included 1,476 proteins 
with significant SNP-based heritability (P < 0.01). The Banner PWAS 
weights were generated from 152 individuals of European ancestry 
and included 1,147 proteins with significant SNP-based heritability. 
The PWAS was performed using the TWAS FUSION software20 with 
linkage disequilibrium reference information from the 1000 Genomes 
Project Phase 3 (ref. 95). We corrected for multiple testing using Bon-
ferroni correction.

Gene prioritization
We created a list of prioritized genes using both gene-based tests and 
colocalization–HEIDI filters. Results from each gene-based test were 
first restricted to protein-coding genes with unique gene identifiers 
based on the release from GENCODE (version 40) for hg19. The fol-
lowing criteria were then used to prioritize genes: (1) a significant 
(Bonferroni-corrected) association from at least two gene-based tests 
(mBAT-combo, TWAS FUSION, SMR or PsyOPS) and (2) evidence of 
colocalization (COLOC PP4 > 0.8) and/or significant SMR association 
with HEIDI P > 0.05. Joint–conditional tests of association and signifi-
cant PWAS associations were used as ancillary approaches to further 
annotate the prioritized gene list.

Tissue and cell type enrichment analysis
An analysis of tissue and cell type enrichment of OCD GWAS association 
signals was conducted using MAGMA (version 1.08)105 and partitioned 
LDSC106. We used the previously described approach29 to determine 
gene expression specificity in bulk tissue RNA-seq data from 37 tissues 
in GTEx (version 8) and single-cell RNA-sequencing data from 19 regions 
in the mouse central and peripheral nervous systems30. The analysis 
was limited to protein-coding genes with 1:1 orthologs between mice 
and humans. Gene expression in each tissue or cell type was calculated 
relative to total expression across all tissues or cell types. Enrichment 
analysis was performed on genes with the top 10% specificity values in 
each tissue or cell type, as previously defined29.

To evaluate the enrichment of tissue- and cell type-specific genes 
in OCD genetic association signals, we applied MAGMA and partitioned 
LDSC. We restricted the analysis to summary statistics for SNPs with a 
high INFO score (>0.6) and frequency in the entire cohort (MAF > 0.01). 
Using MAGMA (version 1.08), we tested whether genes with the top 
10% specificity in a tissue or cell type showed enrichment in gene-level 
genetic associations for OCD, with the 1000 Genomes Phase 3 European 
sample genotypes serving as the linkage disequilibrium reference 
panel. We used standard gene boundaries (35 kb upstream of the tran-
scription start site to 10 kb downstream of the transcription stop site). 
Partitioned LDSC was used to examine whether SNPs within 100-kb 
regions of the top 10% specifically expressed genes were enriched for 
SNP-based heritability for OCD. All results were corrected for multiple 
testing with an FDR threshold of 0.05.

SNP and gene findings in the context of previous analyses
Previously reported associations for significant SNPs (PheWAS). 
Multiple resources were used to identify previously reported asso-
ciations of our 30 significant SNPs with other phenotypes. We used 
the IEU Open GWAS project92, PheWAS analysis of GWAS ATLAS52 
and the NHGRI-EBI GWAS Catalog91 and identified credible SNPs 

through CAUSALdb90. CAUSALdb estimates causal probabilities of all 
genetic variants in GWAS significant loci using three state-of-the-art 
fine-mapping tools including PAINTOR, CAVIARBF and FINEMAP107–110. 
We used default settings for our CAUSALdb queries.

Lookup of previous OCD GWAS findings. We performed a lookup 
of SNPs identified to be significantly associated with OCD-related 
phenotypes in previous GWASs. Note that this is not an independent 
replication, as previous studies partially overlap with the cohorts 
included in this GWAS.

Overlap of previous rare coding variants in OCD and GWAS gene 
findings. We performed a bidirectional lookup, assessing (1) whether 
gene findings from our GWAS showed evidence for rare variant involve-
ment and (2) vice versa, whether findings from rare variant testing 
showed evidence of common variant association in our GWAS.

First, we comprehensively assessed the overlap between 251 genes 
that we highlighted in our study as carrying common risk variation 
for OCD (Supplementary Table 14) and current gene-based summary 
statistics from OCD exome-sequencing data. We used data from Hal-
vorsen et al.88 because it is the largest published exome-sequencing 
study of OCD presently. The supplementary materials from that 
paper include de novo variant calls from 771 case trios and 1,911 con-
trols (supplementary table 14 in ref. 88). We compared the burden of 
de novo variants, partitioned by variant annotation (synonymous, 
missense, loss of function) in trio cases versus trio controls within 
these 251 GWAS-prioritized genes. As described previously88, we 
only included de novo variants that were in loci well covered in both 
case and control data (In_Jointly_Covered_Loci==TRUE). We also 
excluded all calls from quartet samples in ref. 88 (Cohort!=“OCD_
JHU_quartets”). For each of the four variant annotation classes, we 
compared the proportion of cases that had at least one qualifying 
de novo variant to the proportion of controls using a two-sided Fisher’s  
exact test.

Second, as Halvorsen et al.88 describe an overall excess of 
loss-of-function variants in OCD cases relative to controls specifi-
cally within loss-of-function intolerant genes (supplementary table 
13 in ref. 88), we analyzed the overlap between those genes and our 
GWAS-derived genes. We looked up 200 genes with a probability of 
loss-of-function intolerance > 0.995 (derived from ref. 111) and effect 
size estimate > 1. We further tested for a difference in the proportion 
of these pLI > 0.995 genes with effect size estimate > 1 versus ≤1 within 
the set of genes highlighted in the OCD GWAS (n = 251) versus outside 
this set using a two-sided Fisher’s exact test.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The meta-analyzed summary statistics (not including 23andMe data) 
are available from the Psychiatric Genomics Consortium Download 
page (https://www.med.unc.edu/pgc/download-results/). In line 
with 23andMe regulations, 10,000 SNPs from the full GWAS includ-
ing 23andMe are also being made available at https://www.med.unc. 
edu/pgc/download-results/. The full GWAS summary statistics for the 
23andMe discovery dataset will be made available through 23andMe to 
qualified researchers under an agreement with 23andMe that protects 
the privacy of the 23andMe participants. Datasets will be made avail-
able at no cost for academic use. Please visit https://research.23andme. 
com/collaborate/#dataset-access/ for more information and to apply 
to access the data. MVP summary statistics are made available through 
dbGAP request under accession https://www.ncbi.nlm.nih.gov/ 
projects/gap/cgi-bin/study.cgi ?study_id=phs001672.v12.p1 
phs001672.v12.p1.
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Code availability
Core analysis code for RICOPILI can be found at https://sites.google.
com/a/broadinstitute.org/ricopili/. This includes PLINK (https://
www.cog-genomics.org/plink2/), EIGENSOFT (https://www.hsph.
harvard.edu/alkes-price/software/), Eagle2 (https://alkesgroup.broa-
dinstitute.org/Eagle/), Minimac3 (https://genome.sph.umich.edu/
wiki/Minimac3), SHAPEIT3 (https://mathgen.stats.ox.ac.uk/genet-
ics_software/shapeit/shapeit.html), METAL (https://genome.sph.
umich.edu/wiki/METAL_Documentation) and LDSR (https://github.
com/bulik/ldsc). MAGMA can be found at https://ctg.cncr.nl/soft-
ware/magma. GenomicSEM, specifically the tutorial ‘Models without 
Individual SNP effects’ can be found here: https://github.com/Genom-
icSEM/GenomicSEM/wiki/3.-Models-without-Individual-SNP-effects. 
TWAS FUSION can be found at http://gusevlab.org/projects/fusion/. 
PWAS: for access to the protein weights, see https://www.synapse.
org/#!Synapse:syn24872746. GCTA (mBAT-combo and COJO) can be 
found at https://yanglab.westlake.edu.cn/software/gcta/#Overview. 
LDSC and partitioned heritability can be found at https://github.com/
bulik/ldsc. Additional code for data processing (for example, harmoni-
zation of summary statistics) can be found at https://doi.org/10.6084/
m9.figshare.28451894 (ref. 112).
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection. For individual studies please refer to their respective publications.

Data analysis This is fully described in the Online Methods and associated Supplementary Information. In brief: Additional quality control,a ssociation 
analyses,a nd polygenic risk scoring was done either using the Ricopili (v 1118b) pipeline: https://github.com/Nealelab/ricopili,w hich relies on 
the following software: Eigensoft 6.0.1 (incl. smartPCA),P link 1.9,M ETAL 2011-03-25 or in other samples with comparable software tools and 
approaches (more details can be found in the Supplemental Table 51 and the Supplemental Text. 
SNP-based finemapping was performed using GCTA-COJO (as part of the GCTA vl.94.1 release),M TAG vl.08 was used for multivariable GWAS 
or the respective subgroups. Genomic SEM v 0.04 was used to run structural equation analsyes,L DSC (v 1.0.1; https://github.com/bulik/ldsc) 
was used to calculate all heritability estimates and genetic correlations.Gene-based analyses were performed using MBAT-COMBO (within the 
GCTA package vl.94.1),TWAS Fusion (http://gusevlab.org/projects/fusion/; accessed Feb 2023),SMR v 1.3.1 (https://yanglab.westlake.edu.cn/
software/smr/#Overview). 
Tissue and cell-type enrichment of OCD GWAS association signals was conducted using MAGMA (vl.08). 
R v3.4 was used in general for statistical analyzes and plotting (https://www.Rproject.org) 
MiXER v1.2 was used to calculate the number of causal variants accounting for 90% of the SNP heritability in OCD. 
Analyses for PGC analyses were conducted on the SurfSara Lisa computing infrastructure and for all other analyses on the Bianca server as 
part of the Uppsala Multidisciplinary Center for Advanced Computational Science.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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The meta-analyzed summary statistics (not including 23andMe data) will be made available via the Psychiatric Genomics Consortium Download page (https://
www.med.unc.edu/pgc/download-results/). In line with 23andMe regulations, 10,000 SNPs from the full GWAS incl. 23andMe, will be made available.  
The full GWAS summary statistics for the 23andMe discovery data set will be made available through 23andMe to qualified researchers under an agreement with 
23andMe that protects the privacy of the 23andMe participants. Datasets will be made available at no cost for academic use. Please visit https://
research.23andme.com/collaborate/#dataset-access/ for more information and to apply to access the data. 
MVP summary statistics are made available through dbGAP request under accession phs001672.v12.p1.  

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Sex and Gender based analyses were not performed as a consequence of missing samples from the overall collection. We are 
currently running such analyses (sex-stratified analyses) in a subset of the overall sample and will report in an upcoming 
publication on the findings. For most samples the number of female and male cases (and controls) were not available and 
therefore not reported. 

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Analysis are limited to European ancestry samples, no race,ethnicity or other socially relevant groupings have been made 
other than those potentially (hiddenly) associated with our sub-groupings for our main phenotype related ascertainment 
(i.e., self-report, Biobank, comorbid, clinical groups).

Population characteristics This is a meta-analysis of existing (in part unpublished) summary statistics. Details for the respective individual studies are 
provided in the Supplemental material and vary. The most common grouping exists for  genotyping batches (especially for 
the large scale cohort and biobanking studies (including 23andMe).

Recruitment Details are provided in the Supplemental material and vary for the different studies that are part of the meta-analysis. In 
brief, samples were either ascertained in clinical setting, as part of larger biobanking efforts, via 23andMe, or as part of 
studies looking into comorbid phenotypes (such as MDD, ASD, and ADHD). 

Ethics oversight The details of the I RB/oversight body that provided approval or exemption for the research described are given below:  were 
obtained from the Hopkins Medicine Institutional Review Boards. OCGAS-ab: The study was approved by REB at Hospital for 
Sick Children. Ethics approvals for the OCGAS study were obtained from the Hopkins Medicine Institutional Review Boards. 
OCGAS-gh: Informed written consent was obtained in all cases by the participants or their parents. The study was approved 
by the ethical commissions of all involved universities in accordance with the latest version of the Declaration of Helsinki, 
including an ethical permission granted by the Ethic Committees from Aachen, Wuerzburg, Marburg, Frei burg, and the 
Cantonal Ethic Commission of Zuerich (Ref. Nr. 39/97, 140/3 and EK: KEK-ZHNr. 2010-0340/3). OCD-WWF: The study was 
approved by the ethics committee of the University of Wuerzburg, Germany and was conducted according to the ethical 
principles of the Helsinki Declaration. All patients gave written informed consent prior to participation. Psych_Broad: Both 
studies have been approved by the Clinical Research Ethics Committee (CREC) of Hospital Universitari Vall d'Hebron. All 
methods were performed in accordance with the relevant guidelines and regulations and written informed consent was 
obtained from participant parents before inclusion into the study. UKBB: Research on the UK Biobank is conducted under a 
generic Research Tissue Bank approval from the UK North West Multi-centre Research Ethics Committee (MREC). This 
research was approved to be conducted under that approval by the governing Research Ethics Committee of the UK Bio 
bank. The analyses in this paper were performed under an approved extension to project 16577. Yale-Penn: Participants 
were recruited from eastern U.S sites and provided written informed consent as approved by the institutional review board 
at each site.  
23andMe: Participants provided informed consent and volunteered to participate in the research on line, under a protocol 
approved by the external AAHRPP-accredited IRB, Ethical & Independent (E&I) Review Services. As of 2022, E&I Review 
Services is part of Salus IRB (https://www.versiticlinicaltrials.org/salusirb). AGDS: All study protocols were approved by the 
QIMR Berghofer Medical Research Institute Human Research Ethics Committee. The protocol for approaching participants 
through the DHS, enrolling them in the study, and consenting for all phases of the study (including invitation to future related 
studies) and accessing MBS and PBS records was approved by the Ethics Department of the Department of Human Services. 
BioVU: The Vanderbilt University Medical Center Institutional Review Board oversees BioVU and approved this project  
(IRB201609). COGA: Institutional review boards at all sites approved the study and all participants provided informed 
consent. EGOS: Ethical approvals were obtained from the Institutional Review Board (IRB) at the Icahn School of Medicine at 
Mount Sinai, New York, NY, and the Regional Ethical Review Board in Stockholm. EPOC: The study was in accordance with the 
revised Declaration of Helsinki and approved by the local ethics committees of the Cha rite University Medicine Berlin and 
the University Hospital Bonn. Est BB: At recruitment, participants signed a consent allowing follow-up linkage of their 
electronic health records (EH Rs), thereby providing a longitudinal collection of their phenotypic information. FinnGen: The 
Ethical Review Board of the Hospital District of Helsinki and Uusimaa approved the FinnGen study protocol Nr. 
HUS/990/2017. The FinnGen project was approved by Finnish Institute for Health and Welfare (THL), approval numbers 
THL/2031/6.02.00/2017, amendments THL/341/6.02.00/2018, THL/2222/6.02.00/2018, and THL/283/6.02.00/2019. HUNT: 
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The HUNT study was approved by the Regional Committee for Medical and Health Research Ethics, Norway (2015/575). 
IOCDF/OCGAS: This work was approved by the relevant IRBs at all participating sites, and all participants provided written 
informed consent. iPSYCH: The study was approved by the Regional Scientific Ethics Committee in Denmark and the Danish 
Data Protection Agency. MVP: The U.S. Department of Veterans Affairs (VA) Million Veteran Program (MVP) is collecting 
genetic and electronic health record (EHR) data in the U.S with ethical approval given by the Central VA Institutional Review 
Board (IRB) and site-specific IRBs. All relevant ethical regulations for work with human subjects were followed in the conduct 
of the study, and informed consent was obtained from all participants. MoBa: The establishment of MoBa and initial data 
collection was based on a license from the Norwegian Data Protection Agency and approval from The Regional Committees 
for Medical and Health Research Ethics. The MoBa cohort is now based on regulations related to the Norwegian Health 
Registry Act. NORDiC-SWE: This study was approved by the Regional Ethics Committee, Stockholm (EPN Stockholm) and the 
Institutional Review Board (IRB) at the University of North Carolina at Chapel Hill and all subjects provided informed consent. 
NORDiC-NOR: The NORDiC-NOR study was approved by the Norwegian Regional Committee for Medical and Health Research 
Ethics  
(IRB00001872 REK West) under project number 2018/52 REKVest (Pl: Bjarne Hansen) and project number: 2014/75 REKVest 
(Pl: Jan Haavik) and all subjects provided informed consent. OCGAS-all: Ethics approvals for the OCGAS study were obtained 
from the Hopkins Medicine Institutional Review Boards, the Butler Institutional Review Board, the UCLA Institutional Review 
Boards, the Mass General Brigham Human Research Committee, the Columbia University Institutional Review Boards, and 
the National Institutes of Health Institutional Review Board (NIH IRB). OCGAS-nestadt: Ethics approvals for the OCGAS study  
were obtained from the Hopkins Medicine Institutional Review Boards. OCGAS-ab: The study was approved by REB at 
Hospital for Sick Children. Ethics approvals for the OCGAS study were obtained from the Hopkins Medicine Institutional 
Review Boards. OCGAS-gh: Informed written consent was obtained in all cases by the participants or their parents. The study 
was approved by the ethical commissions of all involved universities in accordance with the latest version of the Declaration 
of Helsinki, including an ethical permission granted by the Ethic Committees from Aachen, Wuerzburg, Marburg, Frei burg, 
and the Cantonal Ethic Commission of Zuerich (Ref. Nr. 39/97, 140/3 and EK: KEK-ZHNr. 2010-0340/3). OCD-WWF: The study 
was approved by the ethics committee of the University of Wuerzburg, Germany and was conducted according to the ethical 
principles of the Helsinki Declaration. All patients gave written informed consent prior to participation. Psych_Broad: Both 
studies have been approved by the Clinical Research Ethics Committee (CREC) of Hospital Universitari Vall d'Hebron. All 
methods were performed in accordance with the relevant guidelines and regulations and written informed consent was 
obtained from participant parents before inclusion into the study. UKBB: Research on the UK Biobank is conducted under a 
generic Research Tissue Bank approval from the UK North West Multi-centre Research Ethics Committee (MREC). This 
research was approved to be conducted under that approval by the governing Research Ethics Committee of the UK Bio 
bank. The analyses in this paper were performed under an approved extension to project 16577. Yale-Penn: Participants 
were recruited from eastern U.S sites and provided written informed consent as approved by the institutional review board 
at each site. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was made. Individual studies were selected for inclusion if they had at least an effective samples size of 100. 
Sample size of the meta-analysis is a result of inclusion of all world-wide available samples of European ancestry at the time of study,

Data exclusions Within each analyzed cohort we aimed at analyzing genetically homogeneous samples of unrelated individuals. Related individuals were 
excluded based on Identity by State analyses (pseudo controls were used for trios) and genetic outliers were excluded based on principal 
component analyses. 

Replication Replication in a narrow sense could not be provided given that the meta-analysis comprised of most if not all samples currently available for 
research into the genetics of OCD (at the time of analysis). Consistency was checked via different sensitivity analyses using sub-groupings, 
including genomic SEM analyses, MTAG analyses, internal genetic correlation and other approaches. Our analyses did not reveal a concerning 
amount of heterogeneity in the samples. 

Randomization This study utilized naturally occurring genetic variation as the experimental condition. Because an individual's genotype is fixed at conception, 
we could not randomly assign participants to experimental groups. Instead, we examined the association between pre-determined genetic 
profiles and the observed phenotype of OCD.

Blinding Blinding is not relevant to the current study. Samples were not allocated to different conditions by the researches, and the phenotype 
ascertainment process is fully separate from the genotyping process. 
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n/a Involved in the study
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Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.
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